Low-Delay Prediction- and Transform-Based Wyner-Ziv Coding
نویسندگان
چکیده
This paper studies low-delay Wyner–Ziv coding, i.e., lossy source coding with side information at the decoder, with emphasis on the extreme of zero delay. To achieve zero delay, a scalar quantizer is followed by scalar coding of quantization indices. In the fixed-length coding scenario, under high-resolution assumptions and appropriately defined decodability constraints, the optimal quantization level density is conjectured to be periodic. This conjecture, which is provable when the correlation is high, allows for a precise analysis of the rate-distortion tradeoff. The performance of variable-length coding with periodic quantization is also characterized. The results are then incorporated in predictive Wyner–Ziv coding for Gaussian sources with memory, and optimal prediction filters are numerically designed so as to strike a balance between maximally exploiting both temporal and spatial correlation and limiting the propagation of distortion due to occasional decoding errors. Finally, the zero-delay schemes are also employed in transform coding with small block lengths, where the Gaussian source and side information are transformed separately with the premise that corresponding transform coefficient pairs exhibit good spatial correlation and minimal temporal correlation. For the specific source-side information pairs studied, it is shown that transform coding, even with a small block-length, outperforms predictive coding. Performances of both predictive and transform coding are also compared with the asymptotic rate-distortion bounds.
منابع مشابه
Wyner-ziv Video Coding with Low Encoder Complexity
In current interframe video compression systems, the encoder performs predictive coding to exploit the similarities of successive frames. The Wyner-Ziv Theorem on source coding with side information available only at the decoder suggests that an asymmetric video codec, where individual frames are encoded separately, but decoded conditionally (given temporally adjacent frames) could achieve simi...
متن کاملLayered Wyner-Ziv video coding: a new approach to video compression and delivery
Layered Wyner-Ziv Video Coding: A New Approach to Video Compression and Delivery. (August 2007) Qian Xu, B.S., University of Science & Technology of China; M.S., Texas A&M University Chair of Advisory Committee: Dr. Zixiang Xiong Following recent theoretical works on successive Wyner-Ziv coding, we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantization, and ...
متن کاملWyner-Ziv Video Coding using Hadamard Transform and Deep Learning
Predictive schemes are current standards of video coding. Unfortunately they do not apply well for lightweight devices such as mobile phones. The high encoding complexity is the bottleneck of the Quality of Experience (QoE) of a video conversation between mobile phones. A considerable amount of research has been conducted towards tackling that bottleneck. Most of the schemes use the so-called W...
متن کاملSpatial-Aided Low-Delay Wyner-Ziv Video Coding
In distributed video coding, the side information (SI) quality plays an important role in Wyner-Ziv (WZ) frame coding. Usually, SI is generated at the decoder by the motion-compensated interpolation (MCI) from the past and future key frames under the assumption that the motion trajectory between the adjacent frames is translational with constant velocity. However, this assumption is not always ...
متن کاملTransform-domain Wyner-Ziv Codec for Video
In current interframe video compression systems, the encoder performs predictive coding to exploit the similarities of successive frames. The Wyner-Ziv Theorem on source coding with side information available only at the decoder suggests that an asymmetric video codec, where individual frames are encoded separately, but decoded conditionally (given temporally adjacent frames) could achieve simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 59 شماره
صفحات -
تاریخ انتشار 2011